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The theory behind variations in the acceleration due to gravity is explained in some detail. The 
value of g and the subtle lunar/solar tidal effects on g are calculated. This tutorial is relevant 
background to a discussion about the performance and limitations of precision pendulum clocks, 
such as Shortt, Fedchenko, and Hall's Littlemore. 

Calculation of g  

Before we jump into details of lunar/solar tides let's review some basic physics. To a first 
approximation, the pendulum period equation is T = 2(L/g), where T is the period, L the 
length of the pendulum, and g is the acceleration due to gravity. Here on the surface of the Earth 
g has an approximate value of 9.8 m/s² (or 32 ft/s², 980 cm/s², 385 in/s², 32 ft/s²). In the field of 
gravity research g is often measured in units of Gals, where 1 Gal = 1 cm/s². Thus g is about 980 
Gals, or 980,000 mgal (milligals), or 980,000,000 µgal (microgals). 

Where does the value of g come from? The force of gravity on an object is, to a first 
approximation, F = GMm/R², where M is the mass of the Earth, m is the mass of the object, and 
R is the Earth's radius. Converting force to acceleration (F = ma) and canceling m's we arrive at a 
simple expression for the acceleration due to gravity: F/m = g = GM/R². 

The universal gravitational constant, G (so-called big G), is 6.6742×10-11 m³/s²/kg. The mass of 
the Earth, M, is 5.9736×1024 kg and the radius of the Earth, R, is approximately 6372 km. Doing 
the math, the acceleration due to gravity, g (so-called little g), is about 9.82 m/s². 

In short, the value of g that we have memorized is not a magic mathematical constant, it is 
simply a function of Earth mass, density, and distance. 

Variations in g, Space 

Since Earth has a slight equatorial bulge g clearly varies by latitude. Note that g varies by the 
square of the radius so this effect is amplified. In addition the value of g is affected by such local 
factors as proximity to large mountain masses, subsurface density variations (due to mineral ore, 
oil, gas, or seasonal water table), and elevation above mean sea level. 

Although the nominal value for the acceleration due to gravity at the Earth's surface is 9.8 m/s², g 
ranges from 9.76 to 9.83 m/s² depending on location. That's more than a 0.5% variation! As one 
example, my theoretical calculations predict g here in Seattle (latitude ~47.6°) is 9.8085 m/s² 
while g in San Francisco (latitude ~37.8°) is 9.7997 m/s². The net difference of 0.0088 out of 9.8 
is about 900 ppm (90 ppm / degree of latitude). Wow! 

Similarly while g here at sea level is 9.8085 m/s², g at the summit of nearby Mt Rainier (14411 
ft, 4392 m) is 9.8133 m/s²; a difference of 0.0048 out of 9.8, or about 500 ppm (11 ppm per 100 
meters of elevation). In horological terms (one second a day is about 11 ppm), these two 
examples represent a clock rate error of about 77 and 43 seconds a day. 



We can appreciate why, in previous centuries, a pendulum clock was the scientific instrument 
best suited to measure the shape of the Earth. We take for granted that pocket watches keep the 
same rate anywhere in the world. But one man's error is another man's signal: modern laser-
based, free-fall gravimeters have a sensitivity of about 1 µgal and are used today in mineral and 
oil exploration. 

In short, the value of g that we have memorized is not even a constant, it is a function of where 
on the planet you are; the local and global spatial variations are on the order of hundreds or 
thousands of ppm. 

Variations in g, Time 

If a precision pendulum clock were attached to a massive wall or stone foundation at a fixed 
location on Earth would g then be constant? No, although location is a large factor, it is not the 
only factor. Being massive and nearby (in an astronomical sense), the Sun and Moon have a non-
zero effect on the gravitational force on an object. 

Picture what happens when the Moon is directly overhead. While the Earth is strongly pulling 
the pendulum down with an acceleration of 1 g, the Moon is weakly pulling the pendulum up 
towards itself. The result is that g will decrease slightly. Similarly, when the Moon is on the 
opposite side of the Earth the pendulum is pulled down by the combined forces of both the Earth 
and the Moon. The result is that g will increase slightly. 

The above is a simple but not technically correct explanation for variations in g over time. To be 
more precise realize that tides are the result of a differential force. The way to think of it is not 
that the Moon is pulling one direction and the Earth the other. The proper interpretation is that 
the acceleration caused by the Moon is stronger for near objects than for far objects (and not just 
inverse, but inverse squared). When the Moon is overhead, from the Moon's perspective, the 
center of mass of the Earth is farther away than the center of mass of the pendulum (which rests 
on the surface of the Earth). 

The value of g that we have memorized is also not constant in time. It is affected by the dynamic 
relationship between the Earth, Sun, and Moon. 

Calculation of Tides, Moon 

It's not hard to compute the differential acceleration. Let R be the radius of the Earth and D be 
the distance between the center of the Earth and the center of the Moon. When the Moon is 
directly overhead, a pendulum on the surface of the Earth is D−R  away from the center of the 
Moon. When the Moon is directly opposite the pendulum is D+R away from the center of the 
Moon. The center of Earth remains D away from the center of the Moon. 

Let Me, Mm, and Mp be the mass of the Earth, Moon, and pendulum, respectively. The pendulum 
of mass Mp is accelerated towards the Earth: 

g0 = F/Mp = GMe/R² 

The pendulum is also being accelerated towards the Moon: 



F/Mp = GMm/(D−R)² when the Moon is directly overhead 
F/Mp = GMm/(D+R)² when the Moon is directly below 

The Earth is being accelerated towards the Moon: 

F/Me = GMm/D² 

The differential (tidal) acceleration on a pendulum on the surface of the Earth due to the Moon is 
then: 

GMm/(D−R)² − GMm/D², which expands to 
GMm ( D² − ( D² − 2DR + R²) ) / ( D² (D−R)² ), which simplifies to 
GMm ( 2DR − R² ) / ( D² (D−R)² ) 

Now since R << D (R = 6.372×103 km, D = 3.844×105 km; R/D = 0.016) we arrive at this close 
(within 1%) approximation to the differential acceleration: 

GMm2R/D³ 

With this formula we can now calculate the magnitude of the tidal effect of the Moon. Using Mm 
= 7.347×1022 kg and Dm = 3.844×105 km, the size of lunar tides is gm = 1.10×10-6 m/s². In units 
of g, this is 1.12×10-7 g, or about 0.11 ppm of g. 

Calculation of Tides, Sun 

Using the same formula we can also calculate the magnitude of the tidal effect of the Sun. The 
Sun is so much more massive than the Moon (about 27 million times!) one might expect it to 
have the dominate effect. But it is also much further away (about 390 times) and since tidal 
effects vary as the cube of the distance the net result is that solar tides affect a pendulum only 
45% as much as lunar tides. (Never underestimate the power of inverse square or cube in 
astronomy.) 

With Ms = 1.989×1030 kg and Ds = 1.496×108 km, the size of solar tides is gs = 5.05×10-7 m/s². 
Again in units of g, this is 5.14×10-8 g, or about 0.05 ppm of g. 

The tidal effects are additive. In the case where both the Sun and Moon are overhead the tidal 
effect on g is gm + gs, or 1.63×10-7 g. When not overhead the tidal forces are correspondingly less 
based on the geometry. In general, the value of g experienced at any instant by a pendulum can 
be represented as: 

g = g0 + gm(t) + gs(t) 

where g0 is the fixed acceleration of gravity at some location due to the Earth alone (ignoring the 
rest of the universe) and gm(t) and gs(t) are the time-varying tidal acceleration effects of the 
Moon and Sun, respectively. With an inverse cube effect you can guess that none of the other 
planets in the solar system have a relevant contribution to tides. 

Accurate calculation of gm(t) and gs(t) for any time is complicated by many factors. If the Sun or 
Moon is not directly overhead the effect varies according to the trigonometry of the angles. The 
Earth is tilted 23½°. The distance from the Earth to the Sun varies since the orbit of the Earth 



around the Sun is elliptical, not circular. Same for the Moon. The distance to the Moon varies 
from 363,104 km to 405,696 km. The plane of the orbit of the Moon is inclined 5.1° with respect 
to the Earth-Sun plane. The Earth itself spins while all this is going on. There is precession of the 
orbits; of the plane of the orbits; of the 
axis of rotation(s). There's nutation; 
polar motion. The surface mass of the 
Earth is deformed due to tides, further 
affecting the calculations. A so-called 
Love number correction can be applied 
based on the density and fluidity of the 
mass. There's more than I understand 
to be sure. 

But astronomers love this sort of 
complexity and with no small number 
of lines of computer code it is possible 
to calculate the actual position of the 
Sun and Moon in the sky and compute 
the net lunar/solar correction to g for 
any place and time on Earth. Ocean tides are even more complicated since they depend on time-
delayed sloshing liquids, on topography of bays and ocean shores; levels of differential 
acceleration not relevant to the simple case of the point mass of a pendulum. 

It is as if dozens of celestial gears are in motion, all of them turning at different rates, none of 
them in phase, each of them affecting gravity slightly, and the effect on a pendulum clock is the 
temporary sum of all gears at any given instant. The analogy is appropriate: above, for example, 
is a photograph of an old mechanical tide predicting machine, made from cables, pulleys, shafts, 
dials, and yes ... gears. 

So the value of g that we have memorized is neither constant in space nor in time. Due to the 
effects of the Moon and Sun g is a complex function of time; the temporal variations are on the 
order of a tenth ppm. 

A Graphical View of Tides 

The following plots show calculated changes in g over time for Seattle. The scale for each plot is 
the same: ±200 µgal, with positive values representing upward pull. Since g = 980,000,000 
microgals, 1 µgal is about 10-9 g (a nano g). Typical tidal variations of g here are approximately 
+150 µgal to −100 µgal, which seems to agree well with theory presented above (note 200 µgal 
is about 0.2 ppm g). 

The first plot below is one-week duration; the second plot is one-month duration. Note large 
daily and weekly wiggles. In these plots 12 & 24 hour cycles (Earth rotation) are clearly visible, 
as well as 14 & 28 day cycles (Moon orbit). 



     

The plots clearly reveal multiple cycles superimposed. To better understand this, the first plot 
below is the solar-only component of the 1-week plot above; the second plot below is the lunar-
only component. 

     

Tidal acceleration plots for different locations on Earth and different time spans reveal other 
patterns. Below are three plots for the full year, 2006. 

Solar tides only (note annual cycle and equinox points): 

 



Lunar tides only (note strong 14 & 28 day cycles and slight asymmetry):  

 

 

Combined tidal effect (gravitational sum of lunar and solar effects): 

 

Note also that due to the complex, non-synchronous nature of the cycles the sum of successive 
positive and negative variations of g do not necessarily cancel out over time. Clearly a long-term 
average is better than a short-term average but no average will lead to a complete cancellation. 

The rate of change of g is also of interest to a pendulum clock. A change of 0.1 ppm gradually 
over a few weeks is different than the same change in g over a few hours. From the graphs the 
rate appears to be as much as 200 µgal in as little as 4 hours, which translates to a certain rate of 
period change, equivalent to a "rate of rate" of time (also called frequency drift). 

Math with Small Numbers 

A short aside is useful here. When doing math with very small numbers it is often easier to put 
away the calculator and use shortcuts instead. Consider T = 2(L/g). It's clear that if L 
quadruples then T doubles; if g is quartered then T halves. That's easy. But what happens to T if 
g goes up or down by only 0.1 ppm? First note that saying "g goes up 0.1 ppm" means "g + 0.1 
ppm of g" which is g × (1 + 0.1 ppm), or g × 1.0000001. 

If you consider that 1.1² = 1.21 or 1.01² = 1.0201 or 1.001² = 1.002001 a pattern is clear. 1 plus 
10-n squared is nearly exactly 1 plus 2×10-n. In general, if ε is a small number, both of the 
following are true: 



  (1 + ε)² = 1 + 2ε 
(1 + ε)  = 1 + ½ε 

Similarly, the pattern in 1/1.1 = 0.909 or 1/1.01 = 0.990099 or 1/1.001 = 0.999000999 confirms 
another pair of shortcuts: 

1 / (1 + ε) = 1 − ε 
1 / (1 − ε) = 1 + ε 

Conclusion 

We now see that if g goes up/down by ε, then T goes down/up by ½ε. Also since we now know 
that g varies by about ±1×10-7 (2×10-7 total), we can conclude that T varies by about ±5×10-8 
(1×10-7 total). More on this later. 

Putting this in horological perspective, note that a rate deviation of 1×10-7 is equivalent to about 
3 seconds a year or about 8 ms per day, suggesting that a pendulum clock has to be stable to at 
least a couple of milliseconds a day before it can "detect tides". If a pendulum clock is inherently 
stable to milliseconds a day then tides will significantly limit and measurably affect its short-
term performance. On the other hand, if a pendulum clock is much less accurate than 
milliseconds a day then the noise of lunar/solar tides will transparently join other noises in the 
clock. 

In summary, the 9.8 m/s² value for g changes in the 2nd or 3rd decimal place from location to 
location and changes in the 6th decimal place from hour to hour. The temporal variations are 
bounded and predictable; they average down over time, but never quite to zero. These "ripples" 
in g cause variations in pendulum clock rate on the order of 1×10-7, which is equivalent to 
milliseconds per day. 

The perturbations of period become a source of gravity noise in any precision pendulum clock. A 
more detailed analysis of that noise, the pendulum's response to a changing g, and the ability of 
the pendulum to detect the noise of tides is the subject of the next section. 


