The UTC Time Scale: Internet timing issues

Judah Levine Time and Frequency Division NIST/Boulder Jlevine@boulder.nist.gov

Focus is on time

- Time interval and frequency not considered
 - Network time services usually not used for this except at low accuracy
 - Calibrating stopwatches, timers, etc. where traceability to NIST or other NMI required

Outline of the presentation

- Realization of computer and network time
- Incorporating leap seconds
 Difficulties with current methods
 Possible solutions
- Conclusions

System time formats

Seconds (and fractions) since epoch

- Network Time Protocol uses 1900.0
- Other choices: 1970.0, 1980.0, 17 Nov. 1858
- Time scale is almost always UTC
- Conversions done by applications
 - Local time zone, daylight saving time, ...
 - Display formats, ...

Computer clocks

Oscillator generates periodic "ticks" - Hardware tick period not adjustable **Register incremented on each tick** - Increment value is adjustable in software • Normally always > 0 **Register can be over-written** Discontinuous setting of the clock • Strongly discouraged *except* during a cold start **Register is basis for all system time** functions

Realization of a leap second Time tags during a negative leap second: UTC Day N 23:59:58 Day N+1 00:00:00 Skipping a second does not present a very serious time problem Probably will never happen anyway

Realization of a leap second

Time tags during a positive leap second:

UTC

Day N	23:59:58
Day N	23:59:59
Day N	23:59:60
Day N+1	00:00:00

Realization of a leap second

Time tags during a positive leap second:

UTCTAITAI-UTCDay N23:59:58TdDay N23:59:59T+1sdDay N23:59:60T+2sd+1Day N+100:00:00T+3sd+1

Realization of a leap second Time tags during a positive leap second:

UTCComputersDay N23:59:58C(23:59:58)Day N23:59:59C+1s(23:59:59)Day N23:59:60C+1s(23:59:59)Day N+100:00:00C+2s(00:00:00)

- Computer clocks cannot represent a leap second and are effectively stopped when it occurs
 - Most physical clocks have the same problem

• Time sequence is:

23:59:59 .0, .1, ..., .8, .9, .0, .1, ..., .8, .9, ...

- Time stamps can reverse time ordering of events and can violate causality: An event at 23:59:59.5 (#1) came before one at 23:59:59.4 (#2)
 Systems do not support adding flag to
- second time stamp to show leap second in progress

- Leap seconds can occur in the middle of a working day in Asia and Australia
 - Electronic commerce and digital transactions will be affected as soon as transactions depend on sub-second time resolution
 - This will be a problem sooner rather than later
 - Already a problem for NIST time services in supporting customers of online auctions (eBay)

- Implementation becomes more difficult as number of unsophisticated computer users who are engaged in e-commerce increases
 - Many PC operating systems do not support automatic insertion of leap seconds
 - Synchronization of wide-area networks lost or degraded by a leap second
 - Restoring synchronization places heavy load on time services
 - NIST time services currently handle 10⁹ requests/day
 - Load immediately after leap second about 50X avg.

How many users are affected?

 NIST network time service receives about 10⁹ requests per day

- About 10⁴ requests during leap second
- Rate increasing about 8% per month
- Potential future impact: very serious

Actual current impact: ?

All of these problems are going to get worse as the interval between leap seconds gets shorter. What should we do?

1. Abandon leap seconds

- All previous problems disappear
 But
 - ut1 correction becomes unbounded
 - Message format problems
 - Astronomy problems
 - Public relations problems
 - Legal time in US is MST (minor legal change)

Recommended only as a last resort

2. Use TAI instead of UTC

• TAI time scale not readily available

- NMIs and timing laboratories transmit only UTC
- Legal and commercial purposes require UTC
 - Conversion back from TAI possible but complicated and likely to produce lots of confusion
- NIST NTP Time servers transmit UTC and TAI
 - Does not help much *during* a leap second

3. Change leap second name

- Replace "23:59:60" with 23:59:59+flag to show leap second in progress
 - Flag could be used by applications to restore causality, etc.
 - Standard hardware clocks couldn't do this, but they are broken in the current system too
 - Unknown, potentially large effects on lots of application software
 - Interesting, but probably not practical

4. Move leap second epoch

- Leap second epoch would be <u>only</u> on 1 January at 1200 UTC
 - Multiple leap seconds if needed
 - Business holiday in all time zones
 - Compromise:
 - Problems still remain but effects reduced
 - Advantages of current system preserved
 - ut1 correction remains bounded, might exceed 1s

Conclusions-1

- Any solution to leap second question will involve a compromise
 - Some undesirable effects will always remain
- Moving leap second epoch to 1200 UTC on 1 January is possible compromise
 - Minimal impact on all users
 - Preserves most current advantages

Conclusions-2

- Changing to TAI has lots of problems and will raise lots of objections
 - By using it directly
 - Implicitly by abandoning leap seconds
- Some form of leap second system is here to stay

Conclusions-3

- Changing the name of the leap second to be more compatible with digital time representations would be very helpful and should receive further study
 - 23:59:59 + "leap second in progress"
 - Use of 23:59:60 could remain for those systems that can support it
- Any change in leap second epoch should not depend on the outcome of this study