Some Options for the Future Definition of UTC

Dennis McCarthy U. S. Naval Observatory

Options

- Status quo
- Increase tolerance for |UTC-UT1|
- Smooth over the leap second step
- Conventional adjustment of UTC
 - Conventional date (every leap year, every ten years,...), unknown number
 - Conventional date and number based on deceleration model
- Discontinue leap seconds
- Use TAI
- Re-define second
- Low-accuracy conventional UT1 time scale (UT1C?)

Status Quo

Pro:

- No changes required
- Minimize concerns of software engineers

• Con:

- Frequency of leap seconds increasing
- Possible communications, software problems
- Possible growth of systems based on independent time scales

Increase Tolerance for |UTC-UT1|

• Pro

- Easy to accomplish

Con

- Larger discontinuities
- DUT1 code limitations
- Date of adjustment unpredictable
- What is an acceptable limit?

Smooth Over Leap Second Step

- Pro
 - Eliminates the "extra" second
- Con
 - Requires seconds of different lengths
 - Date of adjustment unpredictable
 - Implementation?

Conventional Adjustment of UTC

 Unknown number of leap seconds at predictable intervals

– Pro
 »Date of adjustment is predictable

– Con

 Number of leap seconds remains unpredictable
 Large discontinuities possible
 |UTC-UT1|>>1

Known number of leap seconds at predictable intervals

 Pro
 »Date of adjustment and number of leap seconds predictable
 »Available for ephemerides – Con »Large discontinuities possible »|UTC-UT1|>>1

Conventional Adjustment of UTC

Discontinue Leap Seconds

Pro:

•

 Eliminate causes for concern

• Con:

- Unlimited growth of |UTC-UT1|
- Two time scales separated by constant bias?

Use TAI

- Similar to elimination of leap seconds
- TAI must be more accessible
- Pro:

Eliminate causes for concern

- Con:
 - TAI must be more accessible
 - Legal definitions of time?

Redefine the Second

- Pro • - Fundamental Solution
- Con
 - Require redefinition of physical units
 Temporary solution

Low-accuracy UT1

• UT1C

Approximation to UT1

• Distributed by Network Time Protocol (NTP), coded signal, ...

CONCLUSION

Status Quo

Change Current Definition

- Increase tolerance for |UTC-UT1|
- Smooth over the leap second step
- Conventional adjustment of UTC
 - Every leap year? Every 10 years?
 - Predict leap seconds based on deceleration model
- Low-accuracy Conventional UT1Time Scale

Effectively Switch to Strict Atomic Time

- Discontinue leap seconds
- Use TAI or redefined UTC
- Re-define second
- Low-accuracy Conventional UT1Time Scale

Definition of Seconds

- Rotational Second
 - -1 / 86,400 of mean solar day
- Ephemeris Second
 - -First used in 1956
 - -1/31,556,925.9747 of tropical year 1900
 - Length of year based on 19th century astronomical observations

Atomic Second

- SI second: 9,192,631,770 periods of the radiation corresponding to the transition between 2 hyperfine levels of the ground state of the Cesium 133 atom (adopted 1964)
- Realizes the Ephemeris Second
- Frequency based on lunar observations from 1954.25 to 1958.25

SI second preserves the rotational second of mid-nineteenth century

Time Scales

Rotational

- UT1 is modern realization of historical astronomical time scales including
 - Mean Solar Time
 - Greenwich Mean Time
 - o Greenwich Civil Time
 - Universal Time (without suffixes)
 - Weltzeit

Time Scales (continued)

Atomic

- TAI (International Atomic Time)

- Follow-on from
 - A.1 (maintained at USNO with input from 9 other laboratories originally. now only USNO)
 - > AM (at BIH with input from many laboratories)
 - ► A3
 - at BIH with input from 3 best laboratories
 - became AT (or TA) in 1969, TAI in 1971
 - others
- All atomic time scales were made equal to UT1 corrected for seasonal effects on 1 Jan 1958 0h 0m 0s
- may be considered modern realization of Ephemeris Time (offset in epoch)

Earth Rotation

- Well documented deceleration
 - Tidal
 - Change in figure

Historical Answers

- UTC (Coordinated Universal Time)
 - Begun in 1960 as cooperative effort of U.S. Naval Observatory and Royal Greenwich Observatory to make coordinated changes to clocks
 - in 1965 BIH defined UTC with respect to atomic time
 - Epoch and frequency adjusted to match UT1 corrected for seasonal variations
- Current UTC adopted beginning in 1972
 - no changes in frequency
 - leap seconds so that |UTC-UT1| < 0.9 s</p>

UTC consistent with previous definitions of legal time

TAI-UTC

Causes for Concern

- Frequency of leap seconds increasing
 - Increasing public annoyance
- Software issues
 - Unpredictable
 - Continuous second counts: days with 86,401 seconds
 - Time stamping 23h 59m 60s
- Communications problems
 - coordination of events during a leap second
- Growth of systems based on independent time scales

Things to Consider

- Navigation
 - -1 second = 1/4 mile at the equator
- Computer software
 - Continuous second counts? 61-second minute?
- Communications
 - Maintain synchronization over the leap second?
- Legal definitions
 - Mean solar time?
- Religious observances
 - Sunrise, noon, sunset?

What to do?

Question needs study
 URSI

- -083
- -IAU
- ITU-R