FEATURES

- 0 ~ 100MHz signal inputs
- $0.8V_{P-P} \sim 3.3V_{P-P} (8\sim 24dBm)$ input signal strength
- 1×10^{-12} /s Allan Deviation(ADEV) noise floor
- 50fs (5×10^{-14} s) phase difference resolution
- Matched channel delay, mismatch < ±2ps_{p-p}
- <u>Time domain</u> frequency stability measurement for most of oscillators in the world. Reduce the use & dependence of frequency domain measurement stuffs which are expensive & huge normally (such as Phase Noise Analyzer).
- USB power & data transmit
- Only $73 \times 33 \times 120$ mm($W \times H \times L$), portable little size
- Generate ADEV/frequency difference/phase difference test reports from TimeLab software

APPLICATIONS

■ High Performance Oscillators/Clocks Stability Analyze

The stability analyze of high performance oscillators/clocks, such as TCXO/OCXO/Atom clocks. FSA3011 can do those frequency stability/tempco/aging measurements

■ Phase-Locked Loop Stability Analyze

The stability analyze of hardware PLL, quantify loop parameter

- Disciplined Oscillators/Clocks Stability Analyze
 - ♦ GPSDO、PPSDO output clocks frequency stability & loop stability analyze
 - ♦ 4G/5G base-station GPSDO/PPSDO performance measurement
- Design Aid for High Performance Oscillators/Clocks

FSA3011 phase measurement noise floor lower than most of oscillators. In the phase of high performance oscillators/clocks design, such as oscillate circuit trouble-shot / temperature compensation / oven-tank control. Compare with traditional phase noise measurement instrument, the more design convenience can be taken by FSA3011 portable little size

BASIC BLOCK DIAGRAM

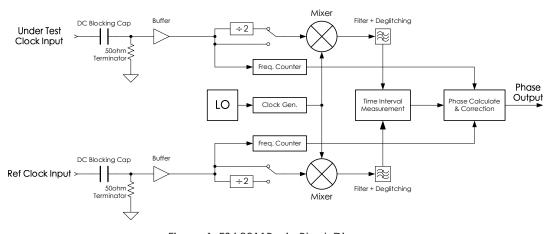


Figure 1. FSA3011Basic Block Diagram

TYPICAL PERFORMANCE CHARACTERISTICS*

Figure 2. ADEV Noise Floor vs Input Frequency(3.3 V_{CMOS} Input)

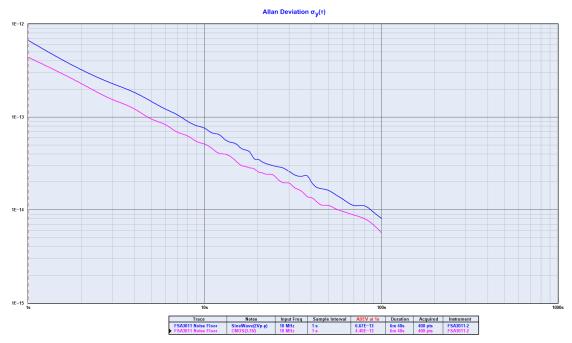


Figure 3. ADEV Noise Floor vs Input Signal Type (Blue: $2V_{p-p}$ Sine, $6.67 \times 10^{-13}/s$; Purple: $3.3V_{CMOS}$, $4.40 \times 10^{-13}/s$)

^{*}All test diagram in this document are generated by Miles Design LLC's TimeLab software.

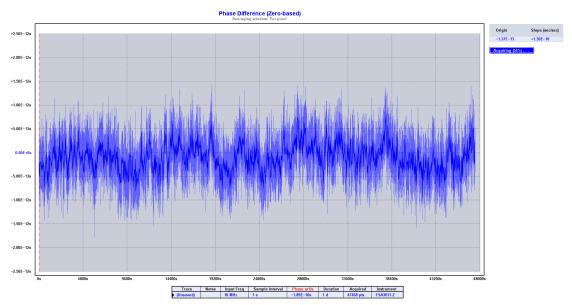


Figure 4. Phase Measurement Noise (10MHz/Com-Source/3.3V_{CMOS} Input, No Average Applied)

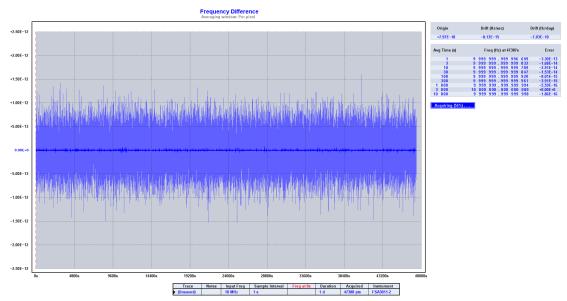


Figure 5. Frequency Measurement Noise (10MHz/Com-Source/3.3V_{CMOS} Input, No Average Applied)

SPECIFICATIONS

TECHNICAL SPECIFICATIONS

Parameter			Specification	Note	
Ports	DUT		SMA /1-100MHz/0.8-3.3V _{P-P} /8-24dBm	50Ω Terminated	
		REF	SMA /1-100MHz/0.8-3.3V _{P-P} /8-24dBm	50Ω Terminated	
	USB		MicroUSB Socket/5V/500mA	USB1.1/2.0	
	All Frequency		$< 1 \times 10^{-12} / s (> 5 MHz)$	- 3.3V _{CMO\$} Input	
	100MHz		$< 6 \times 10^{-13}$ /s (typ.)		
A DEV	50 MHz		< 3×10 ⁻¹³ /s (typ.)		
ADEV Noise	25 MHz		< 6×10 ⁻¹³ /s (typ.)		
Floor	16.667 MHz		< 7×10 ⁻¹³ /s (typ.)		
11001	12.5 MHz		< 8×10 ⁻¹³ /s (typ.)		
	10MHz		< 6×10 ⁻¹³ /s (typ.)		
	5MHz		$< 7 \times 10^{-13}$ /s (typ.)		
Frequenc	су Са	n be Tested	100MHz(Internal \div 2); 50MHz/N (N = 1 \sim 50)	50MHz LO	
Phase Measurem	ont	No Average	$< 2ps(\pm 2 \times 10^{-12}s)$, Peak to Peak	10MHz	
Noise	lem	10s Average	$<\pm 1$ ps($\pm 1 \times 10^{-12}$ s), Peak to Peak	3.3V _{CMOS} Input	
Frequent Measurem	, 110,110,490		$<\pm 2 \times 10^{-12}$ Hz, Peak to Peak	10MHz	
Nedsurerr	IEI II	10s Average	$<\pm 2 \times 10^{-13}$ Hz, Peak to Peak	3.3V _{CMOS} Input	
Channels Mismatch <i>vs</i> Temperature			< ±lps/℃		

Table 1. Technical Specifications

GENERAL SPECIFICATIONS

Parameter	Specifications	Note
Power Input	5V/500mA(USB Bus-Power)	After USB Device Enumerated Success
Power Consumption	Max. 1W(5V/200mA)	
Operating Temperature	0℃-50℃	
Operating Humidity	20%-90% RH, Non-condensing	
Storage Temp./Hum.	-10℃-75℃/10%-95% RH	
Outline Size	$73 \times 33 \times 120$ mm(W×H×L)	

Table 2. General Specifications

PANEL INFORMATION

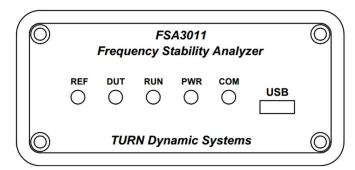


Figure 6. Front Panel

No.	Mark	Function	Note
1	REF	Indicate if Have an Active Input on REF Port	Have/Flicker Otherwise Black
2	DUT	Indicate if Have an Active Input on DUT Port	Have/Flicker Otherwise Black
3	RUN	Indicate if the Instrument is Running	Running/Fast-Flicker Otherwise Black
4	PWR	Power Up Indicator	Powered/Light Otherwise Black
5	СОМ	Active Data Transmit Indicator	Active Transmit/Flicker Otherwise Black
6	USB	Power Deliver & Data Transmit	Micro-USB Port

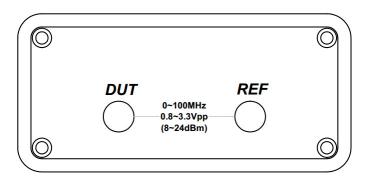


Figure 7. Rear Panel

No.	Mark	Function	Note
1	REF	Reference Clock Input	0-100MHz 0.8-3.3V _{P-P} (8-24dBm@50 Ω)
2	DUT	Under Test Clock Input	0-100MHz 0.8-3.3V _{P-P} (8-24dBm@50 Ω)

TEST TOPOLOGY

NOISE FLOOR MEASUREMENT

Figure 8. Signal Connections for Noise Floor Measurement (Com-Source)

The noise floor measurement of FSA3011 use the common-source method, that means DUT & Ref input signal come from the same clock source, the signal path & noise picking of two channels be considered precisely the same. So the phase fluctuation under this condition is the noise of instrument itself – that is the noise floor.

Note 1. Keep the same length of those two coax-cable behind power-spliter, and as short as possible.

Note 2. 1 ps corresponds to a distance of 0.3mm in air(be shorter in coax-cable actually), a phase difference of 0.1ps($1x10^{13}$ s) only 0.03mm(30μ m). This obviously means that all signal connections must be very rigid, and the mechanical vibration/shock and strong air flow must be void on the test-bench.

NORMAL MEASUREMENT

Figure 9. Signal Connections for Normal Measurement

On normal measurement. Put the high stability referenced clock source on REF input, the clock source under test on DUT input. When the test is started, FSA3011 will measure the phase difference of those two clocks precisely, and send the phase data to PC via USB, then the test reports of xDEV / phase difference / frequency difference can be generated by TimeLab Software.

Note 1. For high stability oscillators/clocks measurement (ADEV<10 11 /s), to get a higher accuracy & confidence of test result, the frequency offset between DUT & REF must smaller than $1x10^9$ Hz.

Note 2. The higher stability clock should be connected to REF input. FSA3011 correction the test data & phase difference to REF clock real-time, this makes the test result more precise and stable.